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Abstract. We evaluate one of the generalised dimensions of the multi-fractal wavefunctions, 
the correlation dimension D ( 2 ) ,  and the participation ratio. We find that, when the system 
undergoes the delocalisation transition, the wavefunction loses its multi-fractal character. 
It is also observed that D(2)  is more sensitive to the electric field than are other core 
properties such as the participation ratio. 

1. Introduction 

The question of localisation of eigenstates in one-dimensional disordered systems in the 
presence of an electric field has been extensively studied. Both analytic (Prigodin 1980, 
Castello et a1 1987) and numerical (Soukoulis et a1 1983, Cota et a1 1985) approaches in 
one dimension have clearly shown the existence of a transition from exponentially 
localised to power-law decaying states as a function of increasing electric field. Exponen- 
tial or power-law decay are characteristics of the asymptotic region of the wavefunction, 
i.e. far from the centre of the mass of the charge distribution. 

It is well established that the critical electric field F, which produces the delocalisation 
transition is that giving a total electrostatic energy across the sample equal to the electron 
energy: F,L = E, with L the sample length. The only relevant parameter in this problem 
is X = FL/E and the transition is a smooth transition around X = 1. It is interesting to 
note that the disorder itself does not play a role in the determination of the critical field 
but only appears to affect the total change in the magnitude being considered, e.g. the 
transmission coefficient (Castello et a1 1987). 

An alternative characterisation of the wavefunctions of disordered systems is given 
by the fractal dimension (Mandelbrot 1977). The fractal dimension is evaluated over a 
length scale smaller than the localisation length around the centre of mass. Therefore it 
is a core property (Soukoulis and Economou 1984). However, this characterisation 
raised some controversies. In fact the results obtained by Soukoulis et a1 were hardly 
reproduced, in particular, in the work by Roman (1986), Siebesma and Pietronero 
(1985) and Pietronero et a1 (1987). 

Roman suggests that the correct discrete version of equation (1) Soukoulis et a1 
(1983) should not contain the contribution from the origin in order to scale correctly for 
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small L.  In doing so, he always obtained a fractal dimension equal to one. He concluded 
that the self-similar behaviour is a spurious effect of the contribution of 1 1 / 1 , - 1 ~ ,  

This result is curious because we have studied the multi-fractality of the wavefunction 
in the same model, eliminating the contribution from the origin, and our results show a 
non-trivial fractal behaviour (Mato and Caro 1987). 

Similarly, Siebesma and Pietronero found not only a slope of unity at short distances 
but also a curvature in a length scale always smaller than the localisation length which 
presents a proper definition of the slope. Again this result is curious because we found 
a slope much lower than unity with a curvature starting at about half the localisation 
length. 

Finally, Pietronero et a1 evaluated the moments of the wavefunction and found no 
evidence of multi-fractality or even fractality. However, this result is not convincing 
because they evaluated moments of a function which is not an eigenfunction of the 
Anderson Hamiltonian. For instance their function is not localised and the moments are 
not restricted to the core. 

It is probable that the differences which we have just mentioned arise from the 
method of evaluation of the wavefunction. Our method of inverse iteration always gives 
the convergent solution and the boundary conditions corresponding to a scattering 
problem allow us to use an arbitrary eigenvalue (RomBn and Wiecko 1986). 

This method which we used in a recent paper (Mato and Caro 1987) showed that the 
localised wavefunction is a multi-fractal object with an infinite number of generalised 
dimensions (Hentschel and Procaccia 1983, Munroe 1953) and a Hausdorff fractal 
dimension equal to one. 

A multi-fractal object is a set that can be split into subsets each having its own fractal 
dimension (Halsey et a1 1986). The characterisation of such an object is made by 
the scaling exponents of the correlation functions t ( q )  of q points. The generalised 
dimensions D(q)  are given by D(q)  = z ( q ) / ( q  - 1). The definition of the fractal dimen- 
sion proposed by Soukoulis et a1 coincides with D ( 2 )  and not with the Hausdorff 
dimension. 

This magnitude D(2), called the correlation dimension, has been extensively studied 
to characterise wavefunctions in several models (Romiin and Wiecko 1986, Zdetis et a1 
1986). 

We shall use this correlation dimension to study the delocalisation transition. We 
shall also use the participation ratio (Bell and Dean 1970) as a measure of the size of the 
wavefunction. 

2. Model 

We shall use a Kronig-Penney model with the PoincarC map representation of the 
Schrodinger equation (Soukoulis et a l l983) .  We approximate the electrostatic potential 
by a step function, which has proved to be a good approximation (Nagai and Kondo 
1980): 
( K ,  + 1 /sin Kn+ 1 ) 11, n+ 1 + (Kn /sin K, ) I/I n - 1 

= (K,+l cos K,+l)/sin K,+l + (K, cos K,)/sin K, + b,vn (1) 
where K, = ( E  + Fn)lI2 and bn is a random variable which measures the strength of the 
nth &function. b, is taken from a rectangular distribution of width Wand centred at 1 
(in units of h2/2m). 
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Equation (1) is solved by the inverse iteration method (Roman and Wiecko 1986) 
with 0 s n s L. The boundary conditions are those corresponding to plane waves 
connected to the ends of the finite system. In this way, we can evaluate the eigenfunctions 
for arbitrary energy. Once the normalised eigenfunction is known, the participation 
ratio P and the correlation dimension D(2)  are evaluated using 

with no such that every term in the sum belongs to the core. Note that the term 
Zn,,/t)n014 has been omitted in equation (3) in order to obtain the correct scaling for 
small I (Roman 1986). 

3. Results and discussion 

We have evaluated P and D ( 2 )  for a system of length L = 1024, E = 1, W = 1, G 

FL/E s lo3 and 15 realisations of the random potential. The wavefunction was evalu- 
ated for each realisation of the random potential and equations (2) and (3) were used to 
obtain P and D(2)  and then they were averaged. The results are shown in figures 1 and 
2. 

It is interesting to note that non-trivial fractal behaviour is obtained for a single 
realisation of the random potential although D(2)  and P are slightly different for each 
sample. According to the values adopted for Wand E the localisation length for small 
fields is around 100. In these cases of small fields the participation ratio takes a constant 
value of approximately 30 which is a measure of the core size. As X increases, the 
participation ratio grows significantly and at X = 1 shows the delocalisation transition. 
For large fields (X S l), the wavefunction spreads over the whole sample. This result 
agrees with the huge decrease in the differential resistivity found by Castello et a1 (1987). 

6ood 

l o g i f L / E I  

Figure 1. Participation ratio as a function of log(FL/E).  The error bars are obtained after 
averaging over 15 samples. 
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Figure2. Correlationdimension D(2)  as afunctionoflog(FL/E). The error bars are obtained 
after averaging over 15 samples. 

The correlation dimension shows a similar behaviour. For small fields ( X S  O.l), 
D(2) is almost constant and its value is in agreement with the results of Soukoulis and 
Economou (1984) and Roman and Wiecko (1986). For very large fields ( X  3 lo3), D(2)  
approaches the value 1, the Euclidean dimension of the space; therefore the fractal 
character of the wavefunction disappears. For such a large field the disordered potential 
becomes irrelevant and the wavefunction is completely determined by the solution of 
the Schrodinger equation with an electric field, i.e. the Airy function. 

In fact, the delocalisation transition is already shown in D(2)  for X -  0.1. This is 
interesting because D(2)  is a short-range property. Such a value for X represents a 
potential drop from site to site of the order of which is four orders of magnitude 
smaller than the average change in site energy due to disorder. This shows that D(2)  is 
much more sensitive to the electric field than is the participation ratio, which is contrary 
to intuition. For q f 2 ,  the D(q)-values behave in a similar fashion; for very large fields 
D(q)  approach the value 1. In conclusion, we have shown that the electric field, through 
the delocalisation transition destroys the multi-fractal character of the wavefunction in 
a disordered system. Moreover, the evaluation of one of the generalised dimensions, 
the correlation dimension D(2) ,  shows that it is as sensitive to the effects of the electric 
field as is an asymptotic property, such as the differential resistivity (Castello et a1 1987), 
and more sensitive than is a core property such as the participation ratio. 
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